ESA v1.8 Documentation

ESA v1.8 Documentation

] COLLABORATORS
TITLE :
ESA v1.8 Documentation
ACTION NAME DATE SIGNATURE
WRITTEN BY April 14, 2022
| REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

ESA v1.8 Documentation iii

Contents

1 ESA v1.8 Documentation 1
1.1 ESAv1.8doc (10.04.1999) 1
1.2 DISCLAIMER and Distribution 0 e 2
1.3 Requirements & Installation L e 3
1.4 Introduction L e e 3
1.5 Features e 4
1.6 Using ESA . . . L o e 5
1.7 ESA Grammar & Constructions (back toschool...) 6
1.8 General NOtes o o e e 7
1.9 Correct Use o o i e e e e 8
1.10 How Do I Get the Best Performance? e 8
1.11 Miscellaneous NOtEeS o o vt ittt e e e e e e 10
112 Error Messages o v v i i e e e e e e e e e e e e e 12
1.13 Pass L Errors o o o e 13
1.14 Pass 2 EIrors o o o e e e e e e 13
1.15 General Brrors L Lo e e 16
1.16 Errors List o o o o e 16
L7 BUZS . . o o e e e e e e 20
118 HIStOry o o e e e 20
119 Future o o e 26
1.20 Hithere! e e 27
1.21 Greetzand Thanx e 27
1.22 Include Files Handling e e e e 28
1.23 Multiple Instructionson a Single Line L e 29
1.24 Conventions and TYPes o o e e e 29
1.25 Effective Address o L e e e 31
1.26 Logical Operators o ittt e e e e e e e e 31
1.27 Comparison Operators and Condition Codes e 31
1.28 Mathemathical Operators o o e e e e e e e e e e 32

1.29

ESA v1.8 Documentation iv

1.30
1.31
1.32
1.33
1.34
1.35
1.36
1.37
1.38
1.39
1.40
1.41
1.42
1.43
1.44
1.45
1.46
1.47
1.48
1.49
1.50
1.51
1.52

A Little Mistake in the Grammar... L 32
Registers o 33
Registers Lists o o e e e e e e 33
Symbols e 33
Boolean EXpressions e e e 34
Mathemathical EXpressions o e e e e e e e e e 39
Restricted Values e e 39
boolean evaluation e e 39
abit of AMOS, t00! e 41
eXING lOOPS o e e e e e e e 41
68k ’dbra’ 43
what to say?!? . . . L e e e 45
justlike Pascal!l o oL e 47
BASIC’s "while’ ... "wend’o e 47
jump table (branches) oL e e 48
jump table (SUbrOutines) e e e e 49
much better than C’s! L L e 51
if? L %elsedf” Ll Celse’ L end T L L L L L 53
defining functions e 55
calling functions L e 57
premature exit from a procedure or function Lo 59
defining procedures L. e e e e e e e e e e e 60

calling procedures e 62

ESA v1.8 Documentation 1/64

Chapter 1

ESA v1.8 Documentation

1.1 ESA v1.8 doc (10.04.1999)

Extended Syntax Assembly v1.8 (22.03.1999)
© 1998 Simone Bevilacqua

DISCLAIMER & Distribution
some legal stuff

Requirements & Installation
did you buy another 32Mb Simm?

Introduction
got time to waste?!? Read here!!!
Features

what can it do?

Usage
how to run it?

Grammar & Constructions
what you can write and what you can’t

General Notes
things you have to know

Error Messages
what’s wrong, now?!?
Bugs

oh, no!

History
what has happened till now

Future

ESA v1.8 Documentation 2/64

what’s still to be done?

Author
some notes about me...

Greetz & Thanx
ciao!

1.2 DISCLAIMER and Distribution

DISCLAIMER

KK A AR A AR A AR A A A A A A A A I A A I A A A A A A A A A I A A I A A A A A AT A A I A A A A AR I A A A Ak A Ak A A Ak kK

* THIS PROGRAM IS PROVIDED "AS-IS" WITHOUT WARRANTY OF ANY KIND *
* EITHER EXPRESSED OR IMPLIED. *
*
I
ACCEPT NO RESPONSABILITY OR LIABILITY FOR ANY DAMAGE OR PROBLEM =*
* DERIVING FROM THE USE OF THIS PROGRAM: USE AT YOUR OWN RISK!!! *

R R S S S R S R R R R R R I R I I R I I A I S I I I S A I b b I b b I b S

Distribution

This program is FREEWARE, therefore IT CANNOT BE SOLD FOR PROFIT.
So, only the distribution charges (i.e.: disk, postage, handling, etc.)
can be applied.

No fee is required from

me

, but donations of any kind (something like
the 1st original tankobon of "Dr.Slump & Arale chan" would be just a
dream... ;) will be gladly accepted.

If distributed on a coverdisk, please send a copy of the mag!!!

ALL the following files *MUSTx be included in the same package (regard-
less of the form it comes in):

ESA/ (main dir)
ESA main executable
ESA.guide this manual
examples/ (examples dir)
readme general info on the sources in examples/
MergeSort.ei example source
QuickSort.ei example source
VBR2FAST.esa little program that moves the VBR to FAST mem
sss/ (dir of a complete example program)
sss.readme prog’s readme file for Aminet

sss.guide prog’s documentation

ESA v1.8 Documentation 3/64

do script for quick compiling
code/ (program sources dir)
defs.i standard asm source
main.esa ESA source code

misc.ei ESA include file

opt.ei ESA include file

split.ei ESA include file

data.i standard asm source

1.3 Requirements & Installation

Requirements
ESA requires a 020+ CPU and KS 2.0.

About 90kb + 40kb (or as much as specified with
-b
) of RAM + enough
room for all the
source files
are needed.

Installation

It doesn’t need to be installed, just put it anywhere on your HD
(preferably on your commands path).

1.4 Introduction

Introduction

Oh... so you’re wondering why I wrote this prog...
No special purpose indeed... I came from a long period during which
I just studied and didn’t code anything (coding is kinda disease...
you know when you start, but don’t know when you’ll finish... sadly
this doesn’t help out with exams...). At the end of this interminable
period of forced coding inactivity, I would’ve coded just anything.
And that’s what happened. ESA was the 1lst idea which came to my mind
and so I immediately started it, getting up in the depths of night.
OK, I guess you can imagine perfectly how I felt like, so I’'1ll try
to be brief.
Between one project and another, I continued (slowly) developing
this program, even though, when the "creative attack" was over, I
was no longer much convinced about it. Yes, an interesting piece of
software to produce, but - I was wondering - will it somehow come in
handy? I didn’t find an answer... I wish that somebody of you will
find it useful or (this would please me even more) that it will
help someone to approach the assembly language...

what do you think

ESA v1.8 Documentation 4/64

about it?!?
I wouldn’t be surprised of hearing comments of the kind:

«Junk. Afraid of asm? Stop complaining about its "difficulty" and go
on with a high level language. No need of this "extension" at all.»
No. I wouldn’t be surprised, because that’s EXACTLY what xIx think.
Can’t believe it? It doesn’t matter. The only other thing (apart from
the pleasure of coding a program that I personally found interesting
to code) which pushed me to complete my work is the fact that I’ve
learned that in this world there’s always somebody who likes what you
wouldn’t have ever believed that could appeal to anyone (phew! Cor-
rect? If not, I hope you can get the general sense the same!!!).

1.5 Features

Features

The job of this program is to take a "strange" assembly source and con-—
vert it to a "standard" one, ready to be assembled by your favourite
assembler. A kinda asm-preprocessing, in short.

So now - you’re surely wondering - what can this prog do, precisely?
Well, as its name suggests, it handles "extended" asm sources (read be-
low to see how), so that, in the end, it can be said that a new, enri-
ched (if you like, this can also be read as: "at a higher level" - but
that’s xnot* what I want at all) assembly language comes out of it.

In a nutshell: ESA takes an "extended" asm source as input and outputs
a standard 020+ asm source.

[Here’s how "strange" a piece of ESA code generally looks (and there
is much, much more) :

when.s d4<dl
QuickSort.s[sav:a0,d4,dl]
ewhen

when.s d0<d5
QuickSort.s[sav:a0,d0,d5]
ewhen

The simplest feature is the possibility of writing
several assembly

instructions on a single line
While this does *notx ease the reading,
sometimes it can help since it permits to have more code than usual on
a single page.

Surely this is not all that ESA can offer.

In fact, it allows you to use some constructions for the program flow
control, which are typical of high-level languages.

Normally you have inline asm inside C, Pascal, Basic, etc.;

ESA, instead, gives inline C, Pascal, Basic, etc. inside asm, with all
the consequent advantages (yeah! we can mess around with CPU’s and HW’s
registers, variables, the stack, etc. in total freedom!).

ESA v1.8 Documentation 5/64

Besides, there are some facilities for the program’s structure design:
yes, I'm referring to procedures and functions...
All I'm talking about is described in detail

here

Obviously, any construction can be used in nested form (there’s only a

very loose limitation...

) !
Finally, ESA treats the include files of any kind (i.e.: both the "old"
"$2.1"s and ESA’s "#7.ei"s) in a "special" way: it’s well worth having

a look at

these info about this
1

1.6 Using ESA

Using ESA

Run it from both CLI or WB (no tooltypes support... do you really
wanna launch it from icon?!? I can’t believe it!!!).

SYNTAX

esa [OPTIONS] source [dest]

ARGS
source : asm source file to convert
dest : output filename
(def.: source="file.esa" -> dest="file.s"
source="anything" -> dest="anything.s")
OPTIONS
-sS {S}: ’'S" is the instructions’ separator (def.: S='S§’)
with this you can decide how to separate
two or
more instructions on the same line
-c {D}: include comments in the output file
(normally they are omitted)
-1C {D}: ’"C’'=first char of labels (def.: ’'.’")

each label produced by ESA will start with ’C’

-bSIZE {M}: work buffer of SIZE bytes (SIZE=>4096; def.: 40Kb)
(the bigger the faster... less accesses to disk!)

-q {M}: gquiet mode (no message will be given)

NOTES

ESA v1.8 Documentation 6/64

- {S}=source option, {D}=dest option, {M}=misc option
the options can be placed anywhere in the command line
- the options and their args can be separated by spaces
— press CTRL-C to break execution anytime

1.7 ESA Grammar & Constructions (back to school...)

ESA Grammar & Constructions (back to school...)

Although ESA makes asm coding a little "easier", to use it without pro-
blems you *dox need to know at least the basics of 68k asm (and of the
Amiga, of course).

Yet, certainly you don’t need to be a master...

so don’t let this messy manual fool you: the formal definitions of the
grammar are a bit scary, but in the end everything is extra-simple.

The fundamental thing to bear in mind is that you can mix pure 68k as-—
sembly and ESA code wherever and whenever you want.
To know how to write ESA code, just read on...

Urgh... gquite hard to explain clearly and deeply how the syntax works!
Anyway, once you’ve understood the general sense, everything should co-
me easy (at least I hope).
To start, I advice you to have a good look at

this quite formal list

of the valid types

of the grammar: if something somewhere is not clear
go on the same (don’t worry!) taking some glances at the examples in
any of the sections below, and then go back for better understanding.

logic:
bool
boolean evaluation

loops:
do ... loop
a bit of AMOS, too!

exit
exiting loops

expire ... nexp
68k "dbra"
for ... to ... step ... next

what to say?!?

repeat ... until
just like Pascal!

while ... ewhile
BASIC’s "while"..."wend"

decisions:

ESA v1.8 Documentation

7/64

functions:

procedures:

directives:

on ... goto
jump table (branches)

on ... gosub
Jjump table (subroutines)

switch .. -> .. def .. eswitch

much better than C’s!

when .. owhen .. othw .. ewhen
"if",."else[if]".."endif"
function ... efunc

defining functions

FUNCNAME []
calling functions

pop
exiting functions

procedure ... eproc
defining procedures

PROCNAME []
calling procedures

pop
exiting procedures

incdir & include
using external sources

1.8 General Notes

General Notes

This section gives you a few hints about:

correct use
problems with generated code

speed
performance of generated code

misc notes
interesting things

ESA v1.8 Documentation 8/64

1.9 Correct Use

Correct Use

The most important thing you have to bear in mind in order to get fully
working code is that you can’t use the stack pointer (sp) freely inside

ESA constructions

(avoid dirty sp tricks!): in fact, the code produced
needs to mess a lot with the sp, so don’t be surprised if crashes hap-
pen when (sp)-like modes are used inside expressions. Just think about
something else and let ESA take total control of the sp inside its own
constructions.

Remember: the stack is heavily used by ESA generated code!

Another thing to remember is that constructions nesting is permitted to
a certain degree: the biggest nest possible is 64 entries long.

Pay attention! There is xnox check... instead of inserting checks, I’d

prefer to enlarge the internal stack (even doubled would be still very

small) used for this purpose in order to avoid the consequent slowdown.

Let me know
if you feel too constrained.

Finally, I advice you to increase the default stack size (4096 bytes)
when working with long & complex sources.

1.10 How Do | Get the Best Performance?

How Do I Get the Best Performance?

Basic, simple, speedy, flexible... but hard to work with due to the
length of the use procedures.

This applies to almost everything in this world.

And particularly to the hardware/software worlds.

Often, to make things a little bit shorter, simplicity, speed and fle-
xibility are sacrificed.

And this is exactly what (naturally) happens with ESA.

KK R AR R A AR A AR A A A A A AR A AR A AR A A A A A A KA A AR A AR A AR A AR A A AR A AR A AR A A AR A AR A AR Ak K

*WHEN WRITING TIME-CRITIC ROUTINES, DON’T RELY ON ESA CODE’S SPEED!!!=«

KA AR A A A A AR A AR A A A AR A A A AR A A AR A A AR A A A A A A AR A AR dA A AR A kA Ak A A kA A kA Ak A Ak k kK

There’s not much to add. You gotta write them by hand (and that’s not
so much bad...).

The reason is that to allow total flexibility to the various constru-
ctions, the code has got to be as much general as possible, and, conse-
quently, slower than it could be if hand written.

ESA’s
add-ons
affect the speed in different degrees:

ESA v1.8 Documentation 9/64

procedures
and
functions
cause a very little speed loss (sometimes
no loss at all)

- the
for
and
expire
constructions also cause a minor speed loss,

expire
, in particular, thanks to its nature (simple), 1is often as
fast as hand written code). Be careful, though, when using a vari-
able for the counter of
for...next
in small loops the overhead
could be quite heavy!

- the real beasts are all the others, as they include the evaluation
of
boolean expressions

Here I’'d like to spend a couple of words (you can skip this...):
writing code which automatically generates pieces of code to evalu-
ate (almost) all kinds of boolean expressions, *withoutx having the
possibility of using registers, is a tough thing (I looked at it as
a challenge... I really enjoyed writing the code about this part -
- I wonder if there’s any theory about this... if you know, please

contact me

); it isn’t easy to get rid of the difficulties that this
problem presents (mainly because there is no availability of regi-
sters), since not only variables (like in high level languages) but
also the registers themselves have to be handled (carefully) as bo-
olean and integer variables in the expressions.
The result is that the code produced for boolean expressions’ evalu-—
ation looks ugly (and it is, indeed), altough I put in as many opti-
mizations as possible (for example: "not" ("

") is treated in a ve-
ry smart way, making large use of the De Morgan rules for logic and
relations inversions for arithmetics): so, if you need speed, avoid
automatically generated boolean expressions.

My advice is: use

procs

4

funcs

4

fors

on so on almost everywhere, but
*dox pay attention when a

boolean expression

ESA v1.8 Documentation 10/ 64

pops up!!!

1.11 Miscellaneous Notes

Miscellaneous Notes

These notes come in no particular order.

If you have followed a link then you should be automatically pointed to
the relevant section (unless you’re at the bottom of the page... this
is a problem of the amigaguide viewers!)

— some constructions produce jumps to labels generated automatically:
if they are local (=start with ’".’) and if between these jumps you
use any global definition, probably the assembler will fail with an
error of the kind: "undefined symbol"

- default size is ".1" (except where differently stated);

- place spaces/TABs wherever you want, except between the arguments
and their own sizes;

- remember that ESA makes mainly *syntacticalx checks, xsemanticsx is
left to the assembler: so, if you write an invalid expression, ESA
won’t warn you at all (give a look at

this simple example
)y

- since
var
accepts almost anything, it’s up to you to avoid
weird things...

— ESA is xcase sensitivex for speed’s sake!

- remarks must start with "’ or ’;’ if they are at the beginning of a
line or are not preceded by any instruction/directive;
otherwise ’;’ is the only char which marks a comment (in this case it
has to be used after a TAB or space);

— comments can be put only at the end of any
sequence of instructions

14

— all spaces and TABs in the arguments will be removed (except if en-
closed between "" or '7);

- when ESA is halted by
an error during pass 2
, the output file holds
all the code generated until that moment

— as shown in the examples scattered in the
grammar
chapter, sometimes
ESA doesn’t seem able to align properly the asm instructions in their

ESA v1.8 Documentation 11/64

column... weird, huh?!? Well, this is not a bug, it’s another "tribu-
te" to speed!!! For the same reason, a negated exclusive or (~eor)
makes some capitalized letters appear in the code ("EOR")!!!

— the labels generated by ESA have this format: CXXXXXXX, where XXXXXXX
is a number in hexadecimal notation and C is generally ’'.’ (or the
char you have selected with the

-1 option
); otherwise, it can be ei-
ther ’'p’ for
global procedures
or 'f" for
global functions

In theory, up to 3%x268435456 different labels can be generated, but
once passed the 268435455 mark, it’s highly likely to produce repeti-
tions... but who’s gonna pass it, anyway?!?

- for those who are going to deeply and critically analyze the code
produced: somewhere you’ll find things like " (-6,sp)" where, instead,
it should have been " (-5,sp)". Don’t worry. This is because the MC68k
decreases [increases] sp by 2 when using a byte size and a predecre-
ment [postincrement] addressing mode to keep the sp word-aligned!

- notice on
error reports
rarely (in just xonex particular case -
challenge (no prize): find it!) the printing of the string which ge-
nerated the error could be somehow corrupted (truncated or partially
modified in the middle, etc.); this is #*not* a bug: it’s because du-
ring passl some integer values are directly written in the source (to
speed up several things): since it happens not so often, I chose not
to fix this problem (to avoid a little slowdown and an increase of
memory needs)

— lines longer than 2048 characters could cause malfunctioning (even
GURUs!!!) when the work buffer is almost full

— little discussion on the kind of brackets used for funcs/procs or
boolean expressions: yes, I was xforced to use ’'[',’]" or "{","}',
respectively. Wanna know why?!?

Look at this: " ~(a0) " [this is a
boolean expression
]
What does it mean to you?
1. logical complement of the data stored at the address in a0
2. logical complement of the data stored in a0
If I had used " (’,’)’, both answers would have been right.
Using the ungraceful ' {’s any ambiguity is swept away:
1. ~(a0) = ~{(a0)}
2. ~a0 = ~{a0}

About functions: " move.l MyLabel (a0),d0 "
What’s your pick?
1. load in dO the wvalue at the address calculated as aO+MyLabel
2. load in dO0 the value returned by the function MyLabel () with the

ESA v1.8 Documentation 12 /64

parameter a0
Again, those would’ve been both right.
But those unusual brackets help us once again:
1. move.l MyLabel (a0),d0 = move.l (MyLabel,a0),do
2. move.l MyLabel[a0],dO

And what about procs?
Honestly, there is no problem with them, thanks to the way they are

called
But how could I mix together ’'[’s and ’'('s ?

- not to complicate too much the code which checks the syntactical cor-
rectness of
vars
, "—(ax)+" is accepted even if wrong bigtime!

1.12 Error Messages

Error Messages

As you may have guessed, this section covers the errors reported by
ESA and all the related stuff. I’ve not been too fussy, so the same
error could be given for a number of different mistakes. My advice

is to check the syntax, the prob is almost always there!

Error reports take the form of:
"ERROR " ERRNO ": " ERRTEXT
or (when needed):

"ERROR " ERRNO ": " ERRTEXT " at line " LINENO " of " FILENAME ":"
">" CODELINE

where:

— ERRNO 1is the number of the error found (it will also be returned as
the AmigaOS fail returncode)

— ERRTEXT is the concise explanation of what happened

— LINENO is the line which the error occurred at

— FILENAME is the file which contains the error (only the file
part of the path is printed)

— CODELINE is the wrong line in the source

(there’s also another little
notice about this

.)
Errors are grouped into 3 classes; below you can find a few info

about them (no description/info given for self-explaining messages) :

pass 1
reports during pass 1

ESA v1.8 Documentation 13/64

pass 2
reports during pass 2

misc
general messages

You may also find useful an ordered
list of all messages

1.13 Pass 1 Errors

Pass 1 Errors

1: user break
— this is your own business...
2: couldn’t load source file
4: not enough memory
— ESA either didn’t find enough room to load a
source file
or
failed to allocate dinamically one of the little structures used
for
procedures
and
functions
definitions!
12: wrong syntax in
procedure declaration
13: wrong syntax in
function declaration
24: too many
nested includes
- max recursion degree for
include files
is 64 - and you’ve Jjust
passed beyond!
25: couldn’t access source directory
— ESA couldn’t get the lock to the dir of a
source/include file
33: directory not found

incdir

specifies a directory which cannot be reached from the
current directory

1.14 Pass 2 Errors

Pass 2 Errors

1: user break

ESA v1.8 Documentation

14 /64

10:

11:

14:

15:

16:

- this is your own business...
unexpected end of file
- there is a construction of the type: "begin"..."end" which
hasn’t been closed (i.e. "end" part missing) before the end
of the source file
unexpected end mark
- ESA met an "end" statement used for the constructions of the
kind: "begin"..."end" which wasn’t the one it was waiting for.
Pay attention to the
nested constructions
in your source
unsignificant string after ESA declaration
— side comments must start with ’;’
- no string is allowed after an ESA construction, unless separated
by the
separator char
8: wrong syntax in

boolexpr
9: wrong syntax in
bool
declaration
wrong syntax in
expire
declaration
wrong
condition code
in
nexp
declaration

wrong size in

pop
declaration

pop
statement not inside a
procedure
/
function
pop
doesn’t work for loops
unknown
procedure
17: unknown
function
18: wrong syntax in
procedure call
19: wrong syntax in
function call
20: arguments mismatch in
procedure
/
function
call
— you passed less or more arguments than expected from the decla-
ration of the
procedure

ESA v1.8 Documentation 15/ 64

/
function
21: wrong syntax in
until
declaration
22: wrong syntax in
while
declaration
23: wrong syntax in
when
declaration
26: wrong syntax in on...
goto
/
gosub
declaration
27: wrong syntax in
for...to...step
declaration
28: byte size in conjunction with address register
- CTR has a byte size in the
for...to...step
declaration and END
or STP is an address register (this applies also to
functions
14
return values!)
— you simply wrote "ax.b"!
29: wrong size in
next
declaration
30:
othw
not inside
when...ewhen
31: wrong syntax in
switch
declaration
32: wrong value declaration after
->
34: error inside
switch...eswitch
- at least 1 "->" is needed (indepentently of
def
case}

def

must be the last case statement

35:
othw
repetition
— othw has already been declared inside the current

when...ewhen

36:

owhen

not inside
when...ewhen

ESA v1.8 Documentation 16/ 64

37:
othw
already specified before

owhen
can’t be declared after
othw
38: wrong size in
loop
declaration
39: wrong size in
exit
declaration
40: not enough loops to
exit
41: cannot
exit
procedures
/
functions
- you have to use
pop
!
42: bad
efunc

return value

1.15 General Errors

General Errors

3: couldn’t open dest file
4: not enough memory
- ESA failed to allocate the work buffers.
Try freeing some memory or decreasing the
work buffer size

1.16 Errors List

Errors List

no class text
1
1
2
user break
2
1

couldn’t load source file

ESA v1.8 Documentation 17/ 64

couldn’t open dest file

not enough memory
unexpected end of file
unexpected end mark
unsignificant string after ESA declaration

wrong syntax in

boolexpr
9

2

wrong syntax in
bool
declaration

10

wrong syntax in
expire
declaration
11

wrong
condition code
in
nexp
declaration
12

wrong syntax in
procedure declaration
13
1
wrong syntax in
function declaration
14
2
wrong size in
pop
declaration
15
2

pop
statement not inside a
procedure

/

ESA v1.8 Documentation 18 /64

function
16
2
unknown
procedure
17
2
unknown
function
18
2
wrong syntax in
procedure call
19
2
wrong syntax in
function call
20
2
arguments mismatch in
procedure
/
function
call
21

wrong syntax in
until
declaration
22

wrong syntax in
while
declaration
23

wrong syntax in
when
declaration
24

too many
nested includes
25
1
couldn’t access source directory
26

wrong syntax in on...
goto
/
gosub
declaration
27

wrong syntax in
for...to...step

ESA v1.8 Documentation 19/64

declaration
28

byte size in conjunction with address register
29

wrong size in
next
declaration
30
2

othw

not inside
when...ewhen

31

2

wrong syntax in

switch

declaration

32

wrong value declaration after

directory not found
34

error inside
switch...eswitch
35
2

othw
repetition
36

owhen

not inside
when...ewhen
37

2

othw
already specified before
38

wrong size in
loop
declaration
39

wrong size in
exit
declaration

ESA v1.8 Documentation 20/ 64

40

not enough loops to
exit
41
2
cannot
exit

procedures

/

functions

42

2

bad
efunc
return value

1.17 Bugs

Bugs
Some versions of ESA have been tested (not so deeply) on:

- A1200/020

- A1200 + TRA1200 (020 @ 28Mhz.)
- A1200 + BZ1230-IV

- A1200 + BZ1260

- A4000/040

- A4000 + CSII-060

No known bug at the moment.

If you think you have found any, please

send me

a detailed bug report.
Machine specs ain’t strictly necessary, the most important thing is the
part of code which you think to be responsible for the bad behaviour of
ESA and the (bad) code generated.

After this, Jjust hope for a prompt fix!!!

1.18 History

History
v1l.8 (22.03.1999)

- very small bugfix: time report was given despite the "-g" option (just a
call to the wrong subroutine)

- removed unused routines

- minor changes

ESA v1.8 Documentation 21/64

- corrected some dates in the exe and in this doc

I tried to upload v1.7 but failed several times... in the meanwhile I deci-
ded to give the final touches for (probably) the last release

vl.7 (19.02.1999)

- major optimization in the code produced for
boolexprs
now you will
no longer see silly things of the kind:

cmpi.b #10,d0

seq.b - (sp)
tst.b (sp) +
beqg.s .false

In fact, where possible, those unefficient set’n’tst are replaced by
a more natural (but only for humans!):

cmpi.b #10,d0
bne.s .false

You may wonder why it hasn’t been so right from the start... well, it
may seem simple, but it is definitely xnot*; I knew someone soon or
later would notice that and ask for an improvement: well, this is
exactly what happened (thank Victor Haaz for this!), altough a couple
of months ago (actually, even before v1.6)

— "cmpa #0,a0" has been substitued by "tst a0" (ESA is for 020+!)

- few little "invisible" retouches

— all examples with

boolexprs
in this doc have been recompiled (this

also served as alpha-testing...)

Incredible... ESA was totally forgotten on my HD, as I decided not to
modify it anymore: well, 1 day, after 2 months, speaking with a friend,
it resurrected from the oblivion ("baby... just try to keep myself away
from myself and me..." - Counting Crows rule!!!) and I found myself
surprisingly willing to keep the promise I made to the guy above so
much time ago...

vl.6 (18.12.1998)

— repeated patches finally added up... and caused some insidious bugs;
bugfixes:
1.
var type
checking routine ("~var" no longer accepted)
2.

boolexpr type
checking routine totally rewritten
3. deep revision of boolexpr generation code: now a
logop
can be

ESA v1.8 Documentation

22 /64

placed after a compare also without
brackets
(e.g.: #1>d0 | d3);
var
cmpop
var is compiled correctly; '

'’ can negate comparisons

not enclosed in
brackets
(e.g.: ~ #1=d0)

boolexprs
can now contain direct
condition codes
tests!
— CTRL-C handling revised
- adapted and recompiled to be compliant my own (updated) includes
- many changes/corrections/additions in the manual (especially in the

boolexpr info part

)

- quite good alpha testing carried out

I stopped developing for a while, believing my job was over.
Well, having updated my personal libraries of functions in a not to-
tally backward compatible way, I had to de-archive this project and
put my hands on it again...
Moreover, while having a nice talk with an ESA user, I realized that
it didn’t allow to check directly the

cc

s in the

boolexprs

being

easy to implement, I didn’t hesitate and added this extra feature,
despite exams getting closer and closer!

vl.5 (30.10.1998)

efunc
extended
- little optimization in
boolexpr
check code
— little manual retouches

Well, no bugfixes this time... it seems I'm almost done with this prog
(at least I wish so)!
vl.4 (25.10.1998)

- as I feared, the "frantic" changes in the previous version led to a

number of mistakes:
1. the usual "bne" <-> "beqg" error in type detection code

ESA v1.8 Documentation 23/64
2. "
>>
and "
<<
" were considered
cmpops
if used in
mathexprs
in-
side
boolexprs
3.
predecrement/postincrement
modes weren’t recognized correctly as
var
, because "+’ and -’ were considered separator chars
4. negative
symbols
weren’t accepted (this should have been fixed
much time ago, but I simply forgot to do it!!!)
5. .’ was recognized as an "empty"
symbol
— removed superfluous TAB+ENTER in the code produced by
switch
— several optimizations (particularly in the grammar handling <+
code)

- manual update

All the bugs fixed in the last two versions (including this one) have

been discovered while writing the program "sss" (contained in the ar-
chive "sss.lha" in the directory "examples" of this
distribution

Please, Mr.Murphy, stop tormenting me...

v1l.3 (23.10.1998)

- brackets changed again!

Procs
and
funcs
now use ’"[’,’]’: nicer and
more practical (no SHIFT - one keystroke less) (sorry if you have

already defined many {}-procs, but there was also a serious reason:

the ' {’s produced some conflicts with boolexprs and resolving them

in another way would have been less efficient... and less stylish!!!

- bugfixes:

1. by changing the brackets used for procs/funcs (in v1.2) I introdu-
ced several bugs (ex.: funcs were handled incorrectly inside bool-
exprs; during debugging I even found one which should have screwed
up everything, but all misteriously worked perfectly!!!).

2. silly flaws in

do

r
repeat

ESA v1.8 Documentation 24/ 64

and
expire
code which, in some
combinations, messed up the labels
3. little correction to include handling
4. few minutes before going to the uni computer lab (and Jjust after
getting up...) to upload this version, I realized that due to the
last changes the grammar code had to be modified!!! So I turned on
my Amiga and made this fix "on the fly", with one hand on the key-
board and the other putting on my shoes...
- little change in
when...ewhen
routines to make generated code a
little more readable if compiling interrupts in the middle of that
construction
— small optimizations
— oh damn! I fear I’'ll never stop updating this .guide!!!

Several important parts of the code had to be modified in a hurry, I
just hope I didn’t throw in any other bugs... I’ve been fighting for
the whole night!!!

vl.2 (16.10.1998)

— major changes in parsing routine (optimised)

- the elegant form "name (args)" for proc/func calls has been dropped
in favour of the awkward form "name{args}"...
...but now

calls to undefined functions can be detected
[

do...loop
added

- "exit" renamed "

pop

n
- (new)

exit

added!
- some flaws fixed
— elapsed time report added
- usual boring changes to this manual

Although this is not a definitive version, I decided to release it be-
cause I'm going away for a few days and, when I’11 be back, I’'1ll be
very busy with studies...

Since it’s complete (and bugfree, I hope) now, there’s no reason to
delay the release for an undefined period of time.

vli.1 (12.10.1998)

switch
100% working: now nesting is permitted and "beqg" replaced
the wrong "bne" (little moment of absent-mindedness of mine...)

ESA v1.8 Documentation 25/64

switch
and
when...ewhen
capabilities extended (explicit condition
declaration and
owhen
, respectively)

for...next
default step set to -1 when using
dwto

(I just forgot
about it before...)

- bugfixes:
1. source file loading
2.
incdir
(after passl this directive wasn’t preserved)
3.
until
("bne"<->"beqg"... same as
switch

)
4. parameters loading in
proc
/
func
calls

includes
handling improved (now names between " or ' are accepted)
- misc optimizations
grammar definition of type imm
extended (I totally forgot the forms
of the kind: #"symb" or #’symb’)

grammar definition of type args
changed (compatible with previous)

AmigaOS fail returncode
added

default
work buffer size
changed (10Kb -> 40Kb)
- manual deeply revised/updated

WOW! it seems I'm almost finished with it!!!

v1l.0 (05.10.1998)

switch
included at 99%

ESA v1.8 Documentation 26 /64

size types
extended ({dsize, asize, Jjsize} instead of {size})
- better handling of regs’ sizes ("ax.b" somewhere would have been
used as a
val
instead of causing an error)

procedures
and
functions
declaration syntax slightly changed:
"PROCNAME, loc ()" has become a much more meaningful: "loc:PROCNAME ()"
- bugfixes:
1.
error reports
2.
othw
3.
include
4. type detection code (probably introduced in v0.9b!), "/" <+
recogni
tion as a
matop
- manual revised/updated ;)

Not released, although it’s the 1st (almost) complete version.

v0.90 (14.09.1998)

incdir
handling added

For some unknown reasons the upload of this version failed several
times: hence it’s never been publically released!!!

v0.9 (15.07.1998)

First public release.
For time reasons
switch
and
incdir
couldn’t be implemented.

1.19 Future

Future

First, let me say that I don’t think I’11l have much time to spend on im-
proving this program. Too bad this xdoesn’t depend on mex.
I just can ensure that I’'ll do my best to fix all the

bugs

ESA v1.8 Documentation 27 / 64

you’ll find
(as soon as I’'11 have the time) and add those easy, minor improvements
which could make ESA a little more friendly.

Speaking about "real" additions/expansions or whatever...

To be honest, I'm not willing at all to add more constructions, for one
simple, plain reason: I don’t wanna end up writing a new language.
If you need to pass to an even higher level, than switch to C or E or
anything else.
ESA has already a few features which at the beginning I didn’t plan nor
want to implement (which ones? procedures, functions... and something
else), ’"coz I considered too "advanced"...
Well, now you got’em, enjoy and let’s forget about this.
But, pleeeeeze, don’t ask me to add other magic commands, unless they’re
are really something special...
However, don’t be discouraged by what I Jjust said:
got an idea? Just

gimme a call

and let’s see if I fancy it.

Maybe it turns out to be that damn nice feature ESA was missing!

1.20 Hi there!

Hi there!
I xdox want your feedback.
Let me know what you think and if you have any problems/ideas or need
some explanations/hints.
Write to:
bevilacg@cli.di.unipi.it
I can also be reached by snail mail at the following addresses:
(during "normal" periods)
Simone Bevilacqua
P.za Garibaldi 9
56100 Pisa (PI)
ITALY
(during uni vacation periods - "safer" address!!!)
Simone Bevilacqua
Via A.Volta 6

86010 Ferrazzano (CB)
ITALY

1.21 Greetz and Thanx

ESA v1.8 Documentation 28 /64

Greetz and Thanx
Thanks to all the true Amigans still around and in particular to:

Michele Berionne, Pietro Ghizzoni: testing and uploading help;
Fabio Bizzetti: testing;

Frank Wille: testing and... his magic PhxAss!!!

Victor Haaz: testing and nice suggestions (maybe one day...)

Mega greetings to my family and all my friends!!!

Finally, thanks to all those who contributed to the Amiga’s greatness.

1.22 Include Files Handling

Include Files Handling

ESA processes the include files listed in the source so that you can
freely build your own "libraries" of

functions

/

procedures

It will recursively (max depth: 64) parse the includes, producing a
single output file without =xanyx include statement. Of course, each
include file will be included and compiled just once (BTW: as a side
effect, this will ease the assembler’s task, as it will have to load
only a single source).

Please note that "IF" directives are simply ignored, so this kind of
declarations:

IFND EXEC_TYPES_T

include "exec/types.i"

ENDC
would be compiled as:

IFND EXEC_TYPES_T

ENDC

if "exec/types.i" has already been included (even if specified with a
different path, provided that both declarations refer to the same phy-
sical file).

The directory which will be scanned to find the include files listed
in a source is the source’s one (when no full path is declared - this
applies recursively also to includes).

The above rule is void if an "incdir" directive is found: in that case,
any other subsequent include statement in the source containing that

"incdir" will refer to the specified directory.

Dir/file names can be enclosed in "" or ’’.

ESA v1.8 Documentation

29/64

Please note that it doesn’t make any sense to compile ESA include files
(my proposal is to call them "#7?.ei" for convention) separately from
the source[sources] which makes[make] use of them because ESA generates
unique labels only when all the source files are available.

KA A KA A A A A A IR A A I A AR A AR I AR I A AR A A A A A AR I A A A A I A A d A A hA Ak hA A kA A A h kA hk Ak A xA A Ak hk

* WARNING: DUE TO TIME REASONS, VERY FEW TESTS HAVE BEEN DONE! *
* IF SOMETHING STRANGE HAPPENS (ESPECIALLY WITH "incdir") IT =
* COULD BE WELL A
BUG
(though I had no problem)! *

Ak Ak h kA h kA h kA hhhk bk hhk bk hhkdhhkdh ko hkhk ko d kA ko kA ko hkk ko kA kA ko hkhkhkhkhkhkhkhk v hhkrhkhkhkhkkhkrhkxh k%

1.23 Multiple Instructions on a Single Line

Multiple Instructions on a Single Line

ESA allows you to put several instructions and/or ESA commands (with
their arguments, if required), separated by a special char, on a single
line.
Let’s make an example:

lea.l buffer,al0 § bool dl=d2,d0.b § add.b do0,dO
I stopped at the 3rd instruction, but there can be as many instructions
as you want... but then you’ll find yourself scrolling the screen hori-
zontally rather than vertically! Not a great deal!!!
As you can see, the instructions are separated by " §" (note: the lea-
ding ’ '’ is compulsory, the following not), which is the default sepa-

rator. If you wish to change it, use the
-s option

WARNING: don’t put labels after an instruction using the separator
(they would be exchanged for instructions)!

1.24 Conventions and Types

CONVENTIONS USED IN THE WHOLE TEXT

ce = ESA and/or asm code
[xyz] = xyz 1s optional

ID:type = ID is an identifier of the type specified
"xyz" = xyz 1is a string of characters
"xyz' = as above (less frequent)

Also, have a look at the
misc notes

ESA v1.8 Documentation 30/64

TYPES
0.
logop
AN
1.
cmpop
R T e L R
"«] " | "«="] "w=") T
2.
matop
L I L I N A B IR S A I P
3.
dsize
L A VAL L o
4.
asize
LAt "w"
5.
jsize
HE A L S AL L o L B
6. dreg : o "do"™ | "di" | ... | "d7" |
dreg dsize
7. areg o "a0" | "al"™ | ... | M"a7"™ |
areg asize
8.
reg
dreg | areg
9.
regslist
reg | reg"/"regslist |
dreg"-"dreg | dreg"-"dreg"/"regslist |
areg"-"areg | areg"-"areg"/"regslist
10.
sym
any symbol accepted by the assembler
11. var
ea
[size] except imm
12.
boolexpr
rval | cc | imm cmpop rval | rval cmpop rval |
boolexpr logop boolexpr | "
" boolexpr |
"{" boolexpr "}"
13.
mathexpr
sym matop sym | sym matop mathexpr |
mathexpr matop sym | mathexpr matop mathexpr |
"(" mathexpr ")"
14. imm : "#"sym | "#"mathexpr | "#727" | T2/
(where "?’ is a string 1,2 or 4 characters long)
15. val : imm | var | func

16.

ESA v1.8 Documentation 31/64

rval
var | func
17. args : wval | val "," args
18. func : any valid ESA
function call
19.
cc
"eqgq" | "ne" | "vc" | "vs" | "pl" | "mi" |
"lo" | "1s"™ | "hi"™ | "hs" | "cc" | "cs" |
"1t | "le™ | "gt"™ | "ge" | "t" | "f"

1.25 Effective Address

Effective Address
ea = any valid addressing mode

ESA won’t make any check on several addressing modes, so eas correct-—
ness is in your hands.

1.26 Logical Operators

Logical Operators

"e¢" = and
"‘n = or
"M = exclusive or

These operators work on boolean basis:
they are *not* bitwise operators operators, but Jjust know 0 and <>0.

Please note that ’"~’ (not), being an unary logic operator, can be used

only in some positions in
boolean expressions

1.27 Comparison Operators and Condition Codes

Comparison Operators and Condition Codes

Here’s the list of the operators which can be used in
boolexprs
(with the corresponding condition codes):

op cc meaning

r=n eq equal to

m>" ne not equal

men 1t less than (signed)

msm gt greater than (signed)

ESA v1.8 Documentation

32/64

ne—n
ns_n

"

n » n

Other

cc

vC
vs
cc
CS

rl

1.28

le
ge
lo
hi
1s
hs

less or equal

greater or equal

lower than
higher than
lower or same

higher or same

(signed)
(signed)
(unsigned)
(unsigned)
(unsigned)
(unsigned)

valid condition codes are:

Mathemathical Operators

meaning

true

false
overflow clear
overflow set
carry clear
carry set

plus

minus

Mathemathical Operators

"+"

"/"

"//"
"<<"
">>"

addition
subtraction

multiplication
division

modulo

shift left
shift right

These are the ones accepted by PhxAss;
dunno other assemblers.

1.29 Sizes

Sizes

".b"’

n n

W
woqn

S"

= byte

word
long

1.30 A Little Mistake in the Grammar...

According to the definition adopted in the

A Little Mistake in the Grammar

co

4

nventions
a thing in

ESA v1.8 Documentation

33/64

the shape of: "dO.b.b.w" is a *correctx dreg.
Actually, this is »xnotx true, but that’s just a simplification in the
grammar (to make it a bit more readable).

1.31 Registers

Registers

Only data & address registers can be used, sorry.

(For now) forget about ssp, sr, and so on...

If you try to use one of them, it will be treated just like a normal
symbol!

Also, keep in mind that ESA doesn’t offer equr’ed regs direct support,
so be xextremely* careful when using them inside
ESA constructions

14

where they can be exchanged for normal variables!!!

1.32 Registers Lists

Registers Lists

This is the type used for movems in 68k asm.
With ESA it assumes a more versatile aspect: in fact you can declare
also the size of any argument.
This, obviously, doesn’t applies to movems (sizes are discarded, ".1"
is used as default), but has a great importance in
procs
and
funcs
calls.

A declaration of the kind: "a0.w/d3.b-d5" is perfectly legal and means,
if included in a call:

- load a0 with a 2 bytes long value
- load d3, d4, d5 with 1 byte long values

The same would have happened if the declaration had been:
"a0.w/d3.b-d5.w"

since only the 1lst size, in "dx.y-di.j" or "ax.y-ai.j" statements, is

taken into account (y here).

Moreover, as the syntax shows, it’s possible to mix in any order aregs
and dregs: "a3.w / d0-d2 / a5 - a7 / d5 / al" is still valid (but =NO=x
check is performed on repetitions! An "ab5" in the place of "al" would
not cause any error!).

1.33 Symbols

ESA v1.8 Documentation 34 /64

Symbols

Here are listed all the chars which can be used in symbols (labels).
If you think that someone is missing, Jjust
drop me a line

KLMNOPQRSTUVWIXYZ
klmnopgrstuvwzxyz
"3 ¢ - 1 e aus o a \textdegree{} © ® p = $\mathrm{\ <«

. 4w

3 £ £ \ensuremath{\pm} S\times ¢ 2 °
The chars .’ and -’ are allowed only at the beginning of a symbol.

ESA will only partially check the correctness of symbols, so it can
happen that unvalid symbols are used without any warning.

1.34 Boolean Expressions

Boolean Expressions

Click here
for some hints on how to use these expressions in the most
effective way.
Also have a look at the
boolean
and
comparison
operators.

The arguments of boolean expressions are treated in this way:
false=0, true<>0.

Yet, after the execution of the evaluation code, it will always be:
false=0, true=-1 (255);

that’s why it’s possible to write expressions like: "a0.w & Sendo.b",

whose code would be:

tst.w a0 ;test low word
sne.b - (sp)

tst.b Sendo ;test LSB!!!
sne.b - (sp)

move.l do, (-4, sp)

move.b (sp)+,do0

and.b do, (sp)

move.l (-6, sp),d0

The size used in comparisons is the one of the 1st
register
or, when

there’s no
reg

ESA v1.8 Documentation 35/64

, of the 1lst argument:

code produced for "Hanamichi.w=Kaede.b":

move.l do, (-6, sp)
move.w Hanamichi, dO
cmp . w Kaede, d0 ;1st arg’s size
seqg.b - (sp) ;jnote that this decrements sp by 2!
move.l (-4,sp),do

code produced for "d5.b=Haruko.l" or "Haruko.l=d5.b":

cmp.b Haruko, d5 ;regs’ size
seq.b - (sp)

As an additional note, when an argument is an address register only
".w" and ".l1" can be used, thus it’s impossible to write something like
"a5.b = Senbe";
on the other hand, a statement of the kind "dO.b > a3.w" will make use
of ".w", since aregs have priority over dregs.
OK. Why don’t you use the same size in both arguments ;)
As you can see, the best code is obtained when at least one argument
is a

register

code produced for "Ronzaman<dl":

cmp.l Ronzaman, dl
sgt.b - (sp)

code produced for "a5.w »= Suppaman":

cmpa . w Suppaman, ab
shs.b - (sp)

code produced for "Suppaman.b »= Ronzaman":

move.l d0, (-6, sp)
move.b Suppaman, d0
cmp.b Ronzaman, d0
shs.b - (sp)
move.l (-4, sp),do

Now, let’s talk about the order in which tests are performed, if no

brackets
are used.
By digesting the
boolexpr syntax
one realizes that it’s possible to
write something like: "dO | dl & d2": which operator is applied first?
Let’s see:

tst.1l do ;test dO...

ESA v1.8 Documentation

36 /64

sne.b - (sp)
tst.1l di
sne.b - (sp)
tst.1 d2
sne.b - (sp)
move.l do, (-4, sp)
move.b (sp) +,d0
and.b do, (sp)
move.l (-6,sp),do
move.l do, (-4, sp)
move.b (sp)+,d0
or.b do, (sp)
move.l (-6,sp),do

This is *not* because ’
&

4

|

", but due to
the way ESA parses the source;
operators ("dO & dl1 | d2"),
as the expression, isn’t the same):

in fact,
we get the same behaviour

;... then dl...
;... and finally d2
;d2 & dil...

;... {d2 & dl1} | dO

has higher priority than '

by changing the order of the
(but the result,

tst.l do ;test dO...
sne.b - (sp)
tst.1l dl ;... then dl...
sne.b - (sp)
tst.1l dz ;... and finally d2
sne.b - (sp)
move.l do, (-4, sp)
move.b (sp)+,d0
or.b do, (sp) ;d2 | dl...
move.l (-=6,sp),d0
move.l do, (-4, sp)
move.b (sp) +,do0
and.b do, (sp) ;... {d2 | dl1} & dO
move.l (-6,sp),d0
Instead,

cmpops

+*dox have higher priority over

logops

, as this example

shows:
"d0 < dl & d2" is compiled as:

cmp.l dl,do ;execute comparison first
slt.b - (sp) ;d0o<dl. ..
tst.l d2 ;... then test d2
sne.b - (sp)
move.l do0, (-4, sp)
move.b (sp)+,d0
and.b do, (sp) ; {d0<dl} & d2
move.l (=6,sp),do

Note that an evaluation of the kind

"d0 < {dl & d2}" would have made no

ESA v1.8 Documentation 37 /64

sense.

That said, we can close this sub-section on the operators order by put-
ting together all we have seen herein: let’s compile "dO | ~dl«d2 & d3"
and see what happens:

tst.l do ;test dO...
sne.b - (sp)
cmp.1l dz,d1 ;... then ~dl«d2 (~{dl«d2})...
shs.b - (sp)
tst.l d3 ;... and finally d3
sne.b - (sp)
move.l do, (-4, sp)
move.b (sp)+,do0
and.b do, (sp) ;d3 & {~dl«d2}...
move.l (-=6,sp),d0
move.l do, (-4, sp)
move.b (sp) +,d0
or.b do, (sp) ;... {d3 & {~dl«d2}} | doO
move.l (-6,sp),do

To close this paragraph, here are some little hints about

cc

s inside
boolexprs; the reason why they are there is that ESA must offer a way
of checking the ccr using boolean constructions after calculations per-—
formed before the boolean test itself. For example, let’s suppose we
want to be sure that an arithmetic operation didn’t generate an error:

"normally" (and in ESA versions prior to v1.6) we would write:
divu.w do,d1 ;jperform division
bvs .mulerr ;take care of overflow

;continue calculations

but we can also write:

divu.w do,d1l ;jperform division

when vs ;1f overflow
. ;take care of overflow
othw ;else

.. ;continue calculations
ewhen

Thanks to the boolexprs

type definition

, besides, it’s possible to
check any combination of

cc
S:
add.1l do,d1 ;perform addition
when cs | mi ;if negative result or bit #31 shifted out

;do some additional operations

ESA v1.8 Documentation

38/64

ewhen

You can, obviously, mix

cc

s with anything
but, indeed, ccr checking does
of a boolexpr, because the ccr
nerated by ESA to evaluate the

a sound check would be:
subqg.l #8,d0
when.s mi & dl
moveq. 1l #0,d0

ewhen

which ESA compiles as:

subg.l #8,d0
smi.b - (sp)
tst.1 dl
sne.b - (sp)
move.l do, (-4, sp)
move.b (sp)+,do0
and.b do, (sp)
move.l (-6, sp),do
tst.b (sp)+
beq.s .0000000
moveq. 1l #0,d0

.0000000

instead:

subg.l #8,d0

when.s dl & mi
moveq. 1l #0,d0
ewhen

would yield "uncorrect" code,

subqg.l #8,d0
tst.1 dl

sne.b - (sp)
smi.b - (sp)
move.l do, (-4, sp)
move.b (sp) +,do0
and.b do, (sp)
move.l (-6, sp),d0
tst.b (sp) +
beqg.s .0000000
moveq. 1l #0,do0

.0000000

allowed inside boolexprs,

really make sense only at the beginning
is modified by the extra operations ge-
expression:

;the ccr holds the flags resulting
; from the "subg"

as the resulting listing shows:

;the ccr flags here are those
;coming from the "tst" not "subg"

Note that with the addition of this feature (in v1.6), it’s no longer
possible to declare variables with the same name of

cc
s: i.e. 't’

ESA v1.8 Documentation 39/64

will always be treated like "true" and not as the variable ’"t’!

"Style" note: boolean expression can be contained inside ’'{’ and ’"}’.
I know it isn’t stylish, but there’s

a very serious reason

behind.

1.35 Mathemathical Expressions

Mathemathical Expressions

These are made of constats/symbols and
math operators

As always, ESA will check only their syntactical correctness:
- ((saythello-to-Pippo)
this will be reported as wrong (FYI (if you’re a very curious dude):
(saythello-to-Pippo) will be accepted and used. Upon completion of all
the operations with it, going on with the parsing, the second ’)’ will
not be found and an error will be generated);

- ApplePie/O0

this, instead, won’t cause any warning, even if the assembler will
clearly scream out loud that divisions by 0 are a little hard to do...

1.36 Restricted Values

Restricted Values

This type is defined for (almost) exclusive use in
boolexprs

As the name suggests, it’s a restricted version of wval, lacking of the

imm type

1.37 boolean evaluation

bool
SYNTAX

"bool" BL:boolexpr "," DEST:var

ESA v1.8 Documentation

40/64

MEANING

1. evaluates BL

2. writes its value
NOTES

— to obtain the fastest results, use the default size, especially
if DEST is not a dreg (see below);
- if DEST is an areg without explicit size, ".w" is used as default;
EXAMPLE O
ESA asm:
bool { {Suppaman=d4} & Slump} | {~{d4=d5}}, d2.1
68k asm:
cmp.l Suppaman, d4
seq.b - (sp)
tst.1l Slump
sne.b - (sp)
move.l do, (-4, sp)
move.b (sp)+,do0
and.b do, (sp)
move.l (-6, sp),d0
cmp.l d5, d4
sne.b - (sp)
move.l do, (-4, sp)
move.b (sp)+,do0
or.b do, (sp)
move.l (-6,sp),d0 ;BL evaluation
move.b (sp) +,d2 ;.1 size doesn’t affect
extb.1l d2 ;much the speed...
EXAMPLE 1
ESA asm:
bool Makusa,ObabaHaru.w
bool Makusa,ObabaHaru.b ;default size
bool Makusa,dO0.1
68k asm:
tst.1l Makusa ;1st "bool"
sne.b - (sp)
move.l do, (-4, sp)

(true, false) to DEST

the default size used for DEST is xbytex;

ESA v1.8 Documentation 41/ 64

move.b (sp)+,do0

extb.1l do

move.w d0, ObabaHaru

move.l (-6,sp),do ;slooow. ..

tst.1l Makusa ;2nd "bool"

sne.b ObabaHaru ;much faster, huh?!?

tst.1l Makusa ; 3rd "bool"

sne.b do ;jquite fast even if size is .1
extb.1l do ;because DEST was a dreg

1.38 a bit of AMOS, too!

do ... loop
SYNTAX

" do n
"loop"[SZ:jsize]

MEANING
1. executes the code between "do" and "loop"

2. repeats 1 forever

NOTES

- SZ is the size for the bra instruction used (default: none);

EXAMPLE O
ESA asm:
do ;here’s a nice
addqg. 1l #1,d0 ;way of wasting
loop.s jprocessor time...
68k asm:
.0000000
addqg. 1l #1,d0
bra.s .0000000

1.39 exiting loops

ESA v1.8 Documentation 42 / 64

exit
SYNTAX

"exit" [SZ:jsize] ["," CNT:imm]

MEANING
1. exits from the last CNT loops entered
(1f CNT undeclared, then CNT=1 by default)
NOTES

- SZ is the size to be used for the bra (default: none);
- CNT is the number of loops you wish to exit from (CNT>0; default: 1)

- if used also inside a begin...end-type construction, this will be
"broken", too (except if it’s a proc or func: that would generate an
error) !

EXAMPLE O
ESA asm:
do
repeat
while doO
expire dl=#23
for d2=#0 upto #10 ;this example does nothing!
exit.s #5 ;exit all the loops at once!
next
nexp
ewhile
until d3
loop
68k asm:
.0000000 ;do label
.0000001 ;repeat label
.0000002 tst.l do ;jwhile condition
beq .0000003
move .w #23,d1
.0000004 ;jexpire label
move.l #0,d2 ;for args loading
move.l #10, .0000005
move.l #1,.0000005+4
bra.s .0000006
.0000005 dc.1 0,0
.0000006 cmp.1l .0000005,d2
bagt .0000007

bra.s .0000008 ;this is exit!!!

ESA v1.8 Documentation

43 /64

add. 1l .0000005+4,d2
bra .0000006
.0000007
dbra d1l, .0000004
bra .0000002
.0000003
tst.l d3
beg .0000001
bra .0000000
.0000008
EXAMPLE 1
ESA asm:
do
when.s #1000=d0.b
exit.s
othw
addg.l #1,d0
ewhen
loop.s
68k asm:
.0000000
cmpi.b #1000,d0
bne.s .0000002
bra.s .0000003
bra.s .0000001
.0000002
addqg. 1l #1,d0
.0000001
bra.s .0000000
.0000003
1.40 68k 'dbra’
expire nexp
SYNTAX
"expire" DX:dreg "=" ST:val
"nexp" ["," COND:cc]
MEANING 0 (when COND not declared)

1. assigns to DX the value of ST
2. executes the code
3. decrements DX by 1

;next

;nexp
;ewhile
;until condition

; loop

;looks like a rather *WorRyiNG=
;jdelay-loop!!!

;exits when...ewhen, too

ESA v1.8 Documentation

44 64

4. 1if DX=

MEANING 1

1. assigns to DX the value of ST
executes the code
3. if COND is satisfied then the execution contines with the first

N

>0, goes to 2

(when COND declared)

instruction after "nexp"
4. else decrements DX by 1
5. if DX=>0, goes to 2

NOTES

- since the instruction used is dbcc,

word (any specification is ignored);

- if DX=ST,

tialized externally;

EXAMPLE O

ESA asm:

.air

68k asm:

.air

.0000000

EXAMPLE 1

ESA asm:

68k asm:

.0000001

lea.l Buffer, al

expire d7 = Buflen
clr.b (a0) +

nexp

lea.l Buffer, al

move .w Buflen, d?
clr.b (al) +

dbra d7, .0000000

expire d3=d3
nop § nop § tst.1l dl
nexp,pl

nop
nop

tst.1 dl

dbpl d3, .0000001

no assignment is done,

so that you can use a register ini-

;counter initialization

;ran out of fantasy...

;no init here!

;dbra with COND

the size of DX and ST is always

ESA v1.8 Documentation

45/64

1.41 what to say?!?
for to ... step ... next
SYNTAX
"for" CTR:var "=" ST:val "upto"|"dwto" END:val ["step" STP:vall]

"next" [SZ:jsize]

MEANING O ("upto", STP>0)

o U W N

assigns the value of ST to the counter CTR
if CTR>END, goes to 6

executes the code "..."

adds STP to CTR

goes to 2

first instruction after "next"

MEANING 1 ("dwto", STP<O0)

2.

if CTR<END, goes to 6

NOTES

defaults: STP= 1 if "upto";
STP=-1 if "dwto";
NEVER use STP=0!!! No check!
SZ is the size of the bcc instruction used (default: none);
size of CTR is its own;
size of ST, END and STP is forced to be equal to CTR’s;
never use "upto" with negative STP or "dwto" with positive STP!
it is necessary to declare the direction with "upto"/"dwto" because
statically STP’s sign is unknown. Direct checks in the generated co-
de would produce even more unefficient code...

EXAMPLE O

ESA asm:

for d4.b=#100 upto dé6

clr.1l (a0) +
next.s
68k asm:
move.b #100,d4 ;load CTR with ST
move.b d6, .0000002 ; store END
move.b #1, .0000002+4 ;default STP

bra.s .0000003

ESA v1.8 Documentation

46/ 64

.0000002
.0000003

.0000004

EXAMPLE 1

ESA asm:

68k asm:

.0000002
.0000003

.0000004

£0000000

£0000001

dc.1l 0,0

cmp.b .0000002,d4
bgt .0000004
clr.1 (al) +

add.b .0000002+4,d4
bra.s .0000003

;local variables (END,STP)
;compare CTR with END
;exit if CTR>END

;update CTR
;repeat the loop

for tmp.w = d3 dwto #23 step NegStepl]

move.l (al)+, (a2) +
next
bra WhoKnowsWhere

function NegStep[]:d1l

bsr _rnd

neg.l do

efunc

move.w d3, tmp

move .w #23,.0000002
bsr £0000000
move.w dl, .0000002+4
bra.s .0000003

de.1l 0,0

move.l a0, - (sp)
exg.l do, a0

move.w tmp, dO

cmp . w .0000002,d0
exg.l d0, a0

movea.l (sp)+,a0

blt .0000004
move.l (al)+, (a2) +
move.l do, - (sp)
move.w tmp, dO

add.w .0000002+4,d0
move.w do, tmp

move.l (sp)+,do0

bra .0000003

bra WhoKnowsWhere
bsr _rnd

neg.l do

rts

;load CTR with ST

; store END

;jcall NegStep|]

;store function result (STP)

;local variables (END,STP)
;jthis quite complex way of
;performing the boundary
;jcheck is caused by the fact
;jthat CTR is not a reg!

;exit if CTR<END
;jagain, things get complicated!
;jusing a reg for CTR would

;jnoticeably speed up this
;part (see above)!

iNegStep[]

ESA v1.8 Documentation

47/ 64

1.42 just like Pascal!

repeat ... until
SYNTAX

"repeat"

"until" [SZ:jsize] BL:boolexpr

MEANING
1. executes the code "..."

2. evaluates BL
3. if BL is false, goes to 1, else exits

NOTES

- the code is always executed at least once;

- SZ is the size of the bcc instruction used (default:

EXAMPLE
ESA asm:
moveq. 1l #1,d0
repeat
add.b do, do
until.s #16=d0.b ;silly, but works...
68k asm:
moveq. 1l #1,d0
.000000A
add.b do, do
cmpi.b #16,d0 ;BL evaluation
bne.s .000000A ;until

1.43 BASIC’s 'while’ ... 'wend’

while ... ewhile
SYNTAX

"while" [SZ:jsize] BL:boolexpr

none) ;

ESA v1.8 Documentation 48 / 64

"ewhile"
MEANING

1. evaluates BL

2. 1f BL is false, goes to 5

3. executes the code "..."

4. goes to 1

5. 1st instruction after "ewhile"

NOTES

— if the 1st time BL is false, the code is never executed;
- SZ is the size of the bcc instruction used (default: none);

EXAMPLE
ESA asm:
while.s {Arale<d7.w}&{#Gacchan>d3}
addg.1l #1,Arale
add. 1l Arale,d3
ewhile ;don’t try to find a meaning...
68k asm:
.000000D cmp . w Arale,d7
sgt.b - (sp)
cmpi.l #Gacchan, d3
slt.b - (sp)
move.l do, (-4, sp)
move.b (sp)+,do0
and.b do, (sp)
move.l (-=6,sp),d0 ;BL evaluation
tst.b (sp) +
beqg.s .000000E ;1if while fails...
addg.l #1,Arale
add. 1l Arale,d3
bra.s .000000D ;repeat loop
.000000E

1.44 jump table (branches)

on ... goto

SYNTAX

"on" V:val "," RX:reg "goto" ["safe"] (SO:sym, Sl:sym, ... , Sn:sym)

MEANING O ("safe" not declared)

ESA v1.8 Documentation 49/ 64

1.
2.

evaluates V
V=x and x<=n: the execution continues at the address Sx
V=x and x>n : get ready for a GURU!!!

MEANING 1 ("safe" declared)

1. evaluates V
2. V=x and x<=n: the execution continues atthe address Sx
V=x and x>n : Jjumps to the first instruction after "on ... goto"
NOTES

RX is the register which can be freely trashed to perform the Jjump;
RX’s size is discarded;

V is loaded to RX only if V<>RX (obvious enough...);

the size of V can be only ".w" and ".1" (def.: ".w");

no check is done on SXes...

EXAMPLE O
ESA asm:
on d5,a6 goto (.shoot, .block, .pass, .jump
.steal, .dunk, .run, .fly) ;very legal!!l!
68k asm:
move .w d5, a6 ;jget V
Jjmp ([.0000000,pc,a6.wx4])
.0000000 dec.1l .shoot, .block, .pass, . jump, .steal, .dunk, .run, .fly
EXAMPLE 1
ESA asm:
on UnitID.w,a2 goto safe (68k,Copper,Blitter,Paula)
68k asm:
move .w UnitID, a2 ;jget V
cmp.w #50004, a2 ;is it valid?
bhs .0000001 ;if not...
Jjmp ([.0000002,pc,a2.wx4])
.0000002 dc.1 68k, Copper,Blitter,Paula
.0000001

1.45 jump table (subroutines)

on

gosub

SYNTAX

ESA v1.8 Documentation 50/64

"on" V:var","RX:reg "gosub" ["safe"] (SO:sym, Sl:sym, ... , Sn:sym)

MEANING O ("safe" not declared)

1. evaluates V
2. V=x and x<=n: Jjumps to the subroutine indicated by Sx
V=x and x>n : get ready for a GURU!!!
3. the code at the address Sx is expected to return with an "rts"
4. execution goes on with the first instruction after "on ... gosub"

MEANING 1 ("safe" declared)

1. evaluates V
2. V=x and x<=n: Jjumps to the subroutine indicated by Sx

V=x and x>n : goes to 4
3. the code at the address Sx is expected to return with an "rts"
4. execution goes on with the first instruction after "on ... gosub"
NOTES

- RX is the register which can be freely trashed to perform the jump;
- RX’s size is discarded;

- the size of V can be only ".w" and ".1" (def.:".w");

- no check is done on SXes...

EXAMPLE O
ESA asm:
Mangas on Rumiko.w, a0 gosub (.ataru, .akane, .lum, .ranma)
68k asm:
Mangas move .w Rumiko, a0
jsr ([.0000003,pc,al0.w*41])
bra .0000004 ;skip jump table
.0000003 dc.1 .ataru, .akane, .lum, .ranma
.0000004
EXAMPLE 1
ESA asm:

on fool.l,a3 gosub safe(
this
is
ungquestionably
silly
)

68k asm:

ESA v1.8 Documentation

51/64

move.l fool, a3 ;".1" is often useless!!!
cmp. 1l #500000004, a3 ;safety check
bhs .0000005
jsr ([.0000006,pc,a3.1%47)
bra .0000005
.0000006 dc.1 this, is,unquestionably,silly
.0000005
EXAMPLE 2
ESA asm:
MyLife on WhatIWillDo[],d0 gosub (code,PlayBBall,
sleep,eat, study)
bra.s MyLife
function WhatIWillDo[] :dO ;d0’11 get the def size (".1")
repeat
bsr _rnd
until #4<>d0 ;eh, eh...
efunc
68k asm:

MyLife bsr £0000000 ; func call; no RX loaded
jsr ([.000000C, pc,d0.1%4]) ;note also the size!!!
bra .000000D

.000000C dc.1l code,PlayBBall, sleep,eat, study

.000000D
bra.s MyLife

£0000000 ;nothing here because I

;didn’t save any reg

.000000E
bsr _rnd
cmpi.l #4,d0
beg .000000E

£0000001 rts

1.46 much better than C’s!

switch ... => ... eswitch
SYNTAX

"switch"[SZ:jsize] SW:rval
"->" [CO:cmpop] Vl:val

["->" [CO:cmpop] V2:val

"7> n

ESA v1.8 Documentation 52 /64

"->" [CO:cmpop] Vn:val
|

["def"
]

"eswitch"

MEANING

1. executes the code contained between the brackets whose Vx is compa-
red successfully to SW according to the condition CO specified (if
CO is omitted, "=’ is used as default);
if the case that no condition is satisfied, the default code is
executed (if "def" declared)

2. jumps to the 1st instruction after "eswitch"

NOTES

— 1f one or more Vx potentially satisfy their own condition, only the
code of the 1lst one (starting from the top) is executed;

- SZ is the size to be used for branches (bccs - default: none);

— the "def" statement must be the last case;

— to decide the case to execute, a series of comparisons between SW
and the Vxs have to be done: the rules about their sizes (if diffe-
rent) are explained

here

7

EXAMPLE
ESA asm:
switch.s WhatHasHappened.w
> #2
lea.l OhDamn, a0
bsr Say
-> a0
lea.l WOWILIKEIT, a0
bsr Say
-> >= xz
bsr GetUpset
def
move.l #"OKOK", answer
eswitch
68k asm:
cmpi.w #2,WhatHasHappened ;1lst comparison (no CO, ’=’ used)
bne.s .0000000 ;1f not successful, go to next

lea.l OhDamn, a0 ;else execute the code inside

ESA v1.8 Documentation

53 /64

bsr

bra.s
cmpa.l
bne.s
lea.l
bsr

.0000000

bra.s
.0000002 move.l
move.w
cmp.w
sge.b
move.l
tst.b
beqg.s
bsr

bra.s
.0000003

move.l
.0000001

1.47

when owhen
SYNTAX

"when" [SZ: jsize]

othw

Say

.0000001
WhatHasHappened, a0
.0000002
WOWILIKEIT, a0

Say
.0000001
do, (-6, sp)

WhatHasHappened, d0
xz,d0

- (sp)

(-4,sp),do

(sp) +

.0000003

GetUpset

.0000001

#"OKOK", answer

if’ ... 'else if’ ... ’else’ ... ’end if’

ewhen

BLW:boolexpr

["owhen" BLO:boolexpr]

["othw"]

"ewhen"

MEANING

1. evaluates BLW

N

then goes to 8
if any "owhen"
if "othw"
goes to 8

o U1 b W

if BLW is true,
"owhen" or "othw"

is specified,

if BLO is true,
"owhen" or "othw"

or "ewhen";

is declared goes to 6
executes the code between "othw" and "ewhen"

or "ewhen";

;jthen continue after switch
;2nd comparison - please note
;that the size used is .1,
;jcos aregs’ size has priority

;3rd comparison
ns_n

;CO is

;9o to default case

executes the code between "when" and the following

executes the code between "owhen" and the following

ESA v1.8 Documentation

54 /64

after that goes to 8
7. repeats from step 3

none) ;

statement;

8. execution continues after "ewhen"
NOTES
— S7Z is the size to be used for branches (bccs - default:
- there can be as many "owhen"s as you want;
— "othw" can be declared only once and after any "owhen"
EXAMPLE O
ESA asm:
when.s ~{d0.w ~ ~dl.Db}
bsr OhDamn
ewhen
68k asm:
tst.w do
seq.b - (sp)
tst.b dl
sne.b - (sp)
move.l do, (-4, sp)
move.b (sp)+,d0
EOR.b do, (sp)
not.b (sp)
move.l (-=6,sp),d0 ;BL evaluation
tst.b (sp) +
beqg.s .000000F ;1if false condition...
bsr OhDamn
.000000F ;...Jjump here!
EXAMPLE 1
ESA asm:
when rains
bsr OpenUmbrella
othw
bsr PutOnSunGlasses
ewhen
68k asm:
tst.l rains ;BL evaluation
beqg .0000011 ; jump performed when false
bsr OpenUmbrella
bra .0000010 ;skip "othw" section
.0000011
bsr PutOnSunGlasses

.0000010

ESA v1.8 Documentation 55/64
EXAMPLE 2
ESA asm:
when.s d0=dl
nop
owhen dl<d2
nop § nop
owhen d3>d4
nop § nop § nop
othw
bsr DoSomething
ewhen
68k asm:
cmp.1l dl,do
bne.s .0000001 ;1f do<>dl...
nop
bra.s .0000000 ;exit
.0000001 cmp.l dz,dl
bge .0000002 ;if di>=d2...
nop
nop
bra.s .0000000 ;exit
.0000002 cmp. 1l d4,d3
ble .0000003 ;if d3<=d4...
nop
nop
nop
bra.s .0000000 ;exit
.0000003
bsr DoSomething ;jdefault case
.0000000
1.48 defining functions
function
SYNTAX
"function" ["loc:"] NAME:sym "[" [RLl:regslist] "]" ["," RL2:regslist] ":" OUT: <«
var
"efunc" [’,’ RESULT:val]
MEANING

1. a label is defined as the entry point of the function

2. if RL2 is declared,
movem

the registers are stored in the stack with a

ESA v1.8 Documentation 56 /64

3. the code "..." 1is copied (and processed, of course)
4., if RESULT is specified, it is copied to OUT (with OUT’s size)
5. if RL2 is specified, the registers are restored from the wvalues
previously saved in the stack (another movem)
6. rts is put at the end of the function
NOTES

RL1 tells ESA how to assign the arguments when this function is

called

;
OUT tells ESA where to get the function’s result from;
pay attention to RL2 and OUT!!! RL2 %SHOULD NOT* contain OUT, if OUT
is a reg (*xnox check)!!!
"function" must be separated from NAME by one or more spaces/TABs,
otherwise "functionNAME" would be acknowledged as an instruction/
/macro/etc...
the exit point of the function is marked by a label to allow the

forced exit from the func
;

normally functions’ labels are global (
whatever char has been

chosen
for labels); instead, if "loc" is declared, the function

definition will be "local", i.e. its labels will start with ’.’;
NAME can be up to 30 char long;
don’t put a label on the same line of "function" (why should you
enter a func in that way?!?);
size of OUT is used only if inside a boolexpr;
ESA won’t check for repetitions of function names;

wondering why you have to use '[’,’]’-type brackets?

EXAMPLE 0
ESA asm:
function SetDMA[dO.w],d1l:d0
move.w $dff002,d1
ori.w #$8000,dO
move .w do, $dff096
move .w dl,do
efunc
68k asm:
£0000000 movem. 1 dl, - (sp) ;save regs in RL2
move .w Sdff002,d1
ori.w #5$8000, dO
move .w do, $dff096
move .w dl,do
£f0000001 movem. 1 (sp) +,d1

rts

ESA v1.8 Documentation 57 /64

EXAMPLE 1
ESA asm:
function GetMess[], d0-d7/a0-a6 :MessAmount.b
lea.l TileTable, a0
bsr MessWithRegs
move.b (a5) ,MessAmount
efunc
68k asm:
£0000002 movem. 1 d0-d7/a0-a6, - (sp)
lea.l TileTable, a0
bsr MessWithRegs
move.b (a5) ,MessAmount
£f0000003 movem. 1 (sp)+,d0-d7/a0-a6
rts
EXAMPLE 2
Go
here
to learn a way of using local definitions.
EXAMPLE 3
ESA asm:
function MessWithDMA[],d0:dl
bsr _Rnd ;let’s get a random dO...
efunc , SetDMA[dO] ;... and watch some fireworks!
68k asm:
£0000004 movem. 1 do, - (sp)
bsr _Rnd
bsr £0000000 ; see example O
move.l do,d1 ;jreturn SetDMA[] retcode
£0000005 movem. 1 (sp)+,d0
rts

1.49 calling functions

Calling a Function
SYNTAX

NAME:sym [SZ:]jsize] "[" [["sav:"] PARAMS:args] "]"

MEANING

ESA v1.8 Documentation 58/64

1. if "sav:" is declared, stores the RL1 registers (declared in the
function definition
) in the stack
2. loads to RL1 the parameters passed inside the brackets
3. executes function code
4. after the execution of NAME (if "sav:" is declared, the registers
of RL1 are restored) the program continues with the 1lst instruction
after this call
NOTES

a function can be called only as an argument of an asm instruction
or ESA construction, i.e. you can’t put it in the label/instruction

fields;
SZ is the size to be used for the bsr (default: none);
when SzZ=".1", the instruction jsr is used instead of bsr.l to easily

allow calls to other code sections;
since ESA is fully orthogonal, funcs can be used everywhere their re-
turn type (

var

) 1s expected to be found;
when "sav:" declared make sure that OUT (returned by the function),
if reg, is not included in RL1;
be extremely cautious when calling functions inside other ESA con-
structs, as you could accidentally trash some variables/registers!

wondering why you have to use '[’,’]’-type brackets?

EXAMPLE O
ESA asm:
move .w
SetDMA.1[#Sf]
, O1dDMA ;1st
move .w SetDMA [sav:#S$f], 0O1dDMA ; 2nd
68k asm:
move .w #S£,d0 ;load arg
jsr £0000000
move .w d0, O1dDMA ; 1st OK!
movem. 1 do, - (sp) ;"sav:" used in the 2nd
move .w #S£,d0
bsr £0000000
movem. 1 (sp)+,do0 ;WRONG! the result
move .w d0, O1dDMA ;is lost!!!
EXAMPLE 1
ESA asm:
bool #24=

GetMess[]

ESA v1.8 Documentation

59 /64

,d7
68k asm:

bsr
cmpi.b
seq.b
move.b

; compound call!

£0000002 ;execute function
#24,MessAmount

- (sp) ;BL evaluation
(sp)+,d7 ;result

1.50 premature exit from a procedure or function

pop
SYNTAX

"pop" [SZ:jsize]

MEANING

1. the last procedure/function being defined is forced to terminate
(a jump to the end label is performed)

NOTES

- SZ is the size to be used for the bra (default: none);
- make sure that the sp is in the same position when the proc/func was
entered, otherwise a crash is almost sure!

- if inside a func,

don’t forget about the return value...

EXAMPLE O

ESA asm:
procedure UpperCasel[a0/d0],d0-d1/a0
IFNE TEST_ON ;1f we’re in test mode,
pop.s ;we wanna do nothing...
ENDIF
moveq.l #$df,d1
subg.l #1,d0
expire d0=d0
and.b d1, (a0)+
nexp, eq
eproc

68k asm:

r0000000 movem. 1
IFNE
bra.s
ENDIF
moveq. 1l
subg.1l

d0-d1/a0, - (sp)
TEST_ON
0000001 ;jJump to exit label

#Sdf, dl
#1,d0

ESA v1.8 Documentation

60 /64

.0000002

p0000001

EXAMPLE 1

ESA asm:

68k asm:

p0000000

.0000004

.0000002

.0000003

p0000001

and.b dl, (a0)+
dbeqg d0, .0000002
movem. 1 (sp)+,d0-d1/a0

rts

procedure StrangePlot[a0],d0-d1/a0

expire d0=#199
move.b fx[d0], (a0) +
nexp

pop

function loc:fx[dl]:dl

mulu.w dl,dl

eori.l RndSeed, d1
efunc

eproc

movem. 1 d0-d1/a0, - (sp)
move.w #199,d0
move.l do,d1

bsr .0000002
move.b dl, (a0)+

dbra do, .0000004
bra 0000001
mulu.w dl,dl

eori.l RndSeed, dl
rts

movem. 1 (sp)+,d0-d1/a0

rts

1.51 defining procedures

SYNTAX

procedure

"procedure" ["loc:"] NAME:sym "["

;£x «MUST+ be skipped!!!

;local func definition:
;as StrangePlot[] is glo-
;bal, fx[] isn’t visible
;externally

[RL1:regslist] "]" ["," RL2:regslist]

ESA v1.8 Documentation 61/64

"eproc"

MEANING
1. a label is defined as the entry point of the procedure
2. if RL2 is declared, the registers are stored in the stack with a
movem
3. the code "..." is copied (and processed, of course)
4. if RL2 is specified, the registers are restored from the values
previously saved in the stack (another movem)
5. rts is put at the end of the procedure
NOTES

RL1 tells ESA how to assign the parameters when this procedure is

called

;
movems size is always long;
size of RL2 is always ".1";
"procedure" must be separated from NAME by one or more spaces/TABs,
otherwise "procedureNAME" would be acknowledged as an instruction/
/macro/etc. ..
the exit point of the procedure is marked by a label to allow the

forced exit from the proc
7

normally procedures’ labels are global (
whatever char has been

chosen
for labels); instead, if "loc" is declared, the procedure
definition will be "local", i.e. its labels will start with ’.’;
NAME can be up to 30 char long;
don’t put a label on the same line of "procedure" (why should you

enter a proc in that way?!?);
ESA won’t check for repetitions of procedure names;

wondering why you have to use '[’,’]’-type brackets?

EXAMPLE O
ESA asm:
procedure loc: WaitMouse[]
W btst.b #6,Sbfel01
bne.s W
eproc
68k asm:
.0000002 ; local labels
W btst.b #6,Sbfel01

ESA v1.8 Documentation

62 /64

bne.s W
.0000003 rts

EXAMPLE 1
ESA asm:
procedure SlowClr[a0/d0.b]l,a0/dl
move.l do, d1
lsr.1l #2,d1
subqg.l #1,d1
.C clr.l (a0) +
dbra di, .c ;from "Writing Bad Code", Chapter 1
eproc
68k asm:
0000000 movem. 1 a0/dl, - (sp) ;save regs in RL2
move.l do,dl
lsr.1l #2,d1
subg.l #1,d1
.C clr.1l (a0) +
dbra dl, .c
p0000001 movem. 1 (sp)+,a0/d1l
rts
EXAMPLE 2
Go
here

to learn a way of using local definitions.

1.52 calling procedures

Calling a Procedure

SYNTAX
NAME:sym [SZ:]jsize] "[" [["sav:"] PARAMS:args] "]"
MEANING
1. if "sav:" is declared, stores the RL1 registers (declared in the

procedure definition
) in the stack
2. loads to RL1 the parameters passed inside the brackets
executes the proc code
4. after the execution of NAME (if "sav:" is declared, the registers
of RL1 are restored) the program continues with the 1lst instruction
after this call

w

ESA v1.8 Documentation 63 /64

NOTES

procedure calls can only be put in the instruction field;

SZ is the size to be used for the bsr (default: none);

when SZ=".1", the instruction jsr is used instead of bsr.l to easily
allow calls to other code sections;

if one of the args matches exactly the corrispondent destination re-
gister in RL1, no "move" is done!

wondering why you have to use '[’,’]’-type brackets?

EXAMPLE O
ESA asm:
WaitMouse.s[]
bra SomewhereElse ;javoid "collisions" with procs
procedure loc:WaitMouse[]
W btst.b #6,Sbfe001
bne.s W
eproc
68k asm:
bsr.s .0000000
bra SomewhereElse
.0000000
W btst.b #6,Sbfel01
bne.s W

.0000001 rts

EXAMPLE 1
ESA asm:
SlowClr[sav: #buffer , dl]
bra SomewhereElse
procedure SlowClr[a0/d0.b],a0/dl
move.l do,d1
lsr.1 #2,d1
subg.l #1,dl
.C clr.1l (a0) +
dbra dil, .c ;from "Writing Bad Code", Chapter 1
eproc
68k asm:
movem. 1 a0/do, - (sp) ;"sav:" -> save regs in RL1
move.l #buffer, al
move.b dl,do ; .b according to declaration
bsr r0000000 ;call proc
movem. 1 (sp)+,a0/do

bra SomewhereElse

ESA v1.8 Documentation

64 /64

p0000000

p0000001

EXAMPLE 2

ESA asm:

68k asm:

movem. 1 a0/dl, - (sp)
move.l do0,dl

lsr.1l #2,d1
subqg.1l #1,d1

clr.1l (a0) +

dbra dl, .c
movem. 1 (sp)+,a0/d1
rts

SlowClr.l[sav:#Buffer,d0]

movem.l a0/d0, - (sp)
move.l #Buffer, a0
jsr 0000002

movem.l (sp)+,a0/do

; Same proc as above

;only a0 loaded!
; Jsr instead of bsr

	ESA v1.8 Documentation
	ESA v1.8 doc (10.04.1999)
	DISCLAIMER and Distribution
	Requirements & Installation
	Introduction
	Features
	Using ESA
	ESA Grammar & Constructions (back to school...)
	General Notes
	Correct Use
	How Do I Get the Best Performance?
	Miscellaneous Notes
	Error Messages
	Pass 1 Errors
	Pass 2 Errors
	General Errors
	Errors List
	Bugs
	History
	Future
	Hi there!
	Greetz and Thanx
	Include Files Handling
	Multiple Instructions on a Single Line
	Conventions and Types
	Effective Address
	Logical Operators
	Comparison Operators and Condition Codes
	Mathemathical Operators
	Sizes
	A Little Mistake in the Grammar...
	Registers
	Registers Lists
	Symbols
	Boolean Expressions
	Mathemathical Expressions
	Restricted Values
	boolean evaluation
	a bit of AMOS, too!
	exiting loops
	68k 'dbra'
	what to say?!?
	just like Pascal!
	BASIC's 'while' ... 'wend'
	jump table (branches)
	jump table (subroutines)
	much better than C's!
	'if' ... 'else if' ... 'else' ... 'end if'
	defining functions
	calling functions
	premature exit from a procedure or function
	defining procedures
	calling procedures

